[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 18, Issue 64 (3-2019) ::
جغرافیایی 2019, 18(64): 267-286 Back to browse issues page
Leaf Area Index (LAI) Responses of Tree Species to Industrial Dust (Case Study: The Caspian Hyrcanian Mixed Forests)
Ali Ashrafi1 , Farshad Amiraslani * 1, Ali Darvishi Boloorani1 , Ali Jafar Mousivand2
1- University of Tehran
2- Tarbiat Modares University
Abstract:   (5571 Views)
The leaf area index (LAI) as an ecological index has a great importance in the study of the health of the trees as well as vegetation stress in the forest. In this case study, we investigate the effects of industrial dust on the health of forest plants in Hyrcanian forests of the north of the country. For this purpose, a hemispherical photography method has been used to estimate leaf area index. A total of 8 sample lines were collected in two directions around the industrial dust area with an attitude up to 600 meters For data analysis, variance1 analysis method was used. There was a significant difference between the mean leaf area index at three levels of distance from the contamination center (p <0.05). The results of the Post Hoc Test, to pair-wise comparison of leaf area index in different distances from dust center using the Tukey ­index, showed that the average of leaf area index was less than 150 m and a significant difference in a distance of more than 300 meters was revealed . Regression analysis was used to eliminate the effect of varieties of plant species and dominant wind direction on leaf area index. The results of the hierarchical regression of leaf area index showed that the variables of the type of plant species and the dominant wind direction affect the prediction of the leaf area index value. In the following, the correlation between distance classes of industrial dust and the average of leaf area index at Land acquisition points was investigated. The results showed that the best correlation between the two above variables in the east direction of this center and along the dominant winds was observed. The amount of R2 was 0.847 with positive power function

Keywords: Leaf Area Index, Hyrcanian forest, Industrial dust, Hemispherical photography, Vegetation stress (tension)
Full-Text [PDF 1097 kb]   (1638 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/04/15 | Accepted: 2018/09/29 | Published: 2019/03/15
References
1. Ade-Ademilua, O. E., Obalola, D. A., (2008), "The effect of cement dust polluation on Celosia Argentea (Lagos spinach) plant", Journal of Environmental Science and Technology, 1 (2): 47-55. [DOI:10.3923/jest.2008.47.55]
2. Alizadehdakhel, A., Ghavidel, A., Panahandeh, M., (2010), "Modeling of particulate matter dispersion from Kerman cement plant", Iranian Journal of Health and Environment, 3 (1): 67-74. [In Persian].
3. Azarov, V., Sergina, N., Kondratenko, T., (2017), "Problems of protection of urban ambient air pollution from industrial dust emissions", MATEC web of conferences. 106: 07017. [DOI:10.1051/matecconf/201710607017]
4. Baroutian, S., Mohebbi, A., Goharrizi, A. S., (2006), "Measuring and modeling particulate dispersion: A case study of Kerman Cement Plant", Journal of Hazardous Materials, 136 (3): 468-474. [DOI:10.1016/j.jhazmat.2006.01.050]
5. Belis, C. A., Karagulian, F., Larsen, B. R., Hopke, P. K., (2013), "Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe", Atmospheric Environment, 69: 94-108. [DOI:10.1016/j.atmosenv.2012.11.009]
6. Bréda, N. J. J., (2003), "Ground-based measurements of leaf area index: A review of methods, instruments and current controversies", Journal of Experimental Botany, 54 (392): 2403–2417. [DOI:10.1093/jxb/erg263]
7. Chen, J. M., Black, T. A., (1992), "Difining leaf area index for non-flat leaves", Plant, Cell and Environment, 15: 421-429. [DOI:10.1111/j.1365-3040.1992.tb00992.x]
8. Deljouei, A., Sadeghi, S. M. M., Abdi, A., (2016), "Comparing leaf area index at different distances from constructed forest roads edge in Hyrcanian forest (Case study: a hornbeam-beech forest in Kheyrud, Mazandaran)", Forest Research and Development, 2 (2): 178-167. [In Persian].
9. Demarez, V., Duthoit, S., Baret, F., Weiss, M., Dedieu, G., (2008), "Estimation of leaf area and clumping indexes of crops with hemispherical photographs", Agricultural and Forest Meteorology, 148 (4): 644-655. [DOI:10.1016/j.agrformet.2007.11.015]
10. Dwivedi, R., Dubey, S., (2017), "Impact of cement industry pollution on physio- morphological attributes of mango tree (Mangifera indica) around industrial belt Sarla", Journal of Medicinal Plants, 5 (1): 274-276.
11. Farbod, E., (2014), "Structural equation modeling in a questionnaire data using Amose22", Mergan- e- ghalam press, Tehran. [In Persian].
12. Flory, S. L., Clay, K., (2006), "Invasive shrub distribution varies with distance to roads and stand age in eastern deciduous forests in Indiana, USA", Plant Ecology, 184 (1): 131-141. [DOI:10.1007/s11258-005-9057-4]
13. Frazer, G. W., Fournier, R. A., Trofymow, J. A., Hall, R. J., (2001), "A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission", Agricultural and Forest Meteorology, 109 (4): 249-263. [DOI:10.1016/S0168-1923(01)00274-X]
14. Ghenai, C., Lin, C. X., (2006), "Dispersion modeling of PM10 released during decontamination activities", Journal of Hazardous Materials, 132 (1 SPEC. ISS.), 58-67. [DOI:10.1016/j.jhazmat.2005.11.085]
15. Gower, S. T., Kucharik, C. J., Norman, J. M., (1999), "Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems", Remote Sensing of Environment, 70 (1): 29-51. [DOI:10.1016/S0034-4257(99)00056-5]
16. Groeneveld, R. A., Meeden, G., (1984), "Measuring skewness and kurtosis", The Statistician, 33: 391-399. [DOI:10.2307/2987742]
17. Hagezadeh, E., Asghari, M., (2011), "Methods and statistical analyzes by looking at the research method in the biological sciences and health sciences", Jahad- e-Daneshgahy Press, Theran. [In Persian].
18. Hall, R. J., Côté, J. F., Mailly, D., Fournier, R. A., (2017), "Hemispherical Photography in Forest Science: Theory, Methods", Applications (Vol. 28).
19. Hojati najafabadi, M., Darvishi bolorani, A., Alavipanah, S. K., (2015), "Suggest a model for estimating the PM10 concentration of dust storms using satellite images", MSC thesis, Department of geography, University of Tehran. [In Persian].
20. Iqbal, M. Z., Shafüg, M., (2001), "Periodical Effect of Cement dust pollution on the growth of some plant species", Pollution Research, 25: 19-24.
21. Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., (2004), "Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography", Agricultural and Forest Meteorology, 121 (1-2): 19-35. [DOI:10.1016/j.agrformet.2003.08.027]
22. Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., Amann, M., (2015), "Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level", Atmospheric Environment, 120: 475-483. [DOI:10.1016/j.atmosenv.2015.08.087]
23. Kardel, F., Wuyts, K., Babanezhad, M., Vitharana, U. W. A., Wuytack, T., Potters, G., Samson, R., (2010), "Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L", Environmental Pollution, 158 (3): 788-794. [DOI:10.1016/j.envpol.2009.10.006]
24. Kumar, S. S., Singh, N. A., Kumar, V., Sunisha, B., Preeti, S., Deepali, S., Nath, S. R., (2008), Impact of dust emission on plant vegetation in the vicinity of cement plant, Environmental Engineering and Management Journal, 7 (1): 31-35. [DOI:10.30638/eemj.2008.006]
25. Küßner, R., Mosandl, R., (2000), "Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany", Canadian Journal of Forest Research, 30 (3): 440-447. [DOI:10.1139/x99-227]
26. Lal, B., Ambasht, R. S., (1982), "Impact of cement dust on the mineral and energy concentration of Psidium guayava. Environmental Pollution Series A", Ecological and Biological, 29 (4): 241-247.
27. Middleton, N., Kang, U., (2017), "Sand and dust storms: Impact mitigation", Sustainability (Switzerland), 9 (6): 1-22. [DOI:10.3390/su9061053]
28. Mousavi, S., Motasadi, S., Jouzi, A., Khorasani, N. A., (2015), "Investigating the effects of the dust from Cement industry on vegetation diversity and density", case study: Shahroud cement industry", Journal of Health, 6 (4): 429-438. [In Persian].
29. Nali, C., Lorenzini, G., (2007), "Air quality survey carried out by schoolchildren: an innovative tool for urban planning", Environmental Monitoring and Assessment, 131 (1-3): 201-210. [DOI:10.1007/s10661-006-9468-2]
30. Nanos, G. D., Ilias, I. F., (2007), "Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters", Environmental Science and Pollution Research, 14 (3): 212-214. [DOI:10.1065/espr2006.08.327]
31. Noorpoor, A. R., Kazemi Shahabi, N., (2012), "Measurement and sampling of pollutant particles from the stack and ambient air in the cement industry by sampling pumps (case study: Ilam cement company)", In 1st International conference on cement industry, energy and environment, Tehran. [In Persian].
32. Olivas, P. C., Oberbauer, S. F., Clark, D. B., Clark, D. A., Ryan, M. G., O'Brien, J. J., Ordo-ez, H., (2013), "Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape", Agricultural and Forest Meteorology, 177: 110-116. [DOI:10.1016/j.agrformet.2013.04.010]
33. Omidi-Khaniabadi, Y., Goudarzi, G. R., Rashidi, R., Zare, S., Armin, H., Jourvand, M. (2016), "A Simulation of pollutants dispersion from dorud cement plant using screen3 software model", Yafteh, 17 (4): 75-83. [In Persian].
34. Pekin, B., Macfarlane, C., (2009), "Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing", Remote Sensing, 1 (4): 1298-1320. [DOI:10.3390/rs1041298]
35. Poblete-Echeverría, C., Fuentes, S., Ortega-Farias, S., Gonzalez-Talice, J., Yuri, J. A., (2015), "Digital cover photography for estimating Leaf area index (LAI) in apple trees using a variable light extinction coefficient", Sensors (Switzerland), 15 (2): 2860-2872. [DOI:10.3390/s150202860]
36. Prasad, M. S. V., Inamdar, J. A., (1990), "Effect of cement kiln dust pollution on groundnut (Arachis hypogaea)", Indian Botanical Contactor, 7 (4): 159-162.
37. Rafiq, R., Kumawat, D. M., (2016), "Impact of Cement industry Pollution on Physio-morphological attributes of Apricot tree (Prunus armeniaca) around industrial belt Khrew, Kashmir", International Archive of Applied Sciences & Technology, 7 (1): 1-5.
38. Rawat, V., Katiyar, R., (2015), "A review: on the effects of cement dust on vegetation. international", Journal of Scientific & Innovative Research Studies, 3 (4): 39-45.
39. Sadegh, S. M. M., Attarod, P., Van Stan, J. T., Pypker, T. G., (2016), "The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran", Science of the Total Environment, 568: 845-855. [DOI:10.1016/j.scitotenv.2016.06.048]
40. Sadeghi, R., Khorasani, N. A., (2009), "Investigation of dust effects resulting from cement industries on variation and density of rangeland vegetation cover Case study: Abyek cement factory", Iranian Journal of Health and Environment, 11 (1): 107-120. [In Persian].
41. Sanai, C. H., (2009), "Industrial toxicology", University of Tehran Press. [In Persian].
42. Smirnov, N., (1948), "Table for estimating the goodness of fit of empirical distributions", The Annals of Mathematical Statistics, 19 (2): 279-281. [DOI:10.1214/aoms/1177730256]
43. Suciu, I., Cosma, C., Todicǎ, M., Bolboacǎ, S. D., Jäntschi, L., (2008), "Analysis of soil heavy metal pollution and pattern in central Transylvania", International Journal of Molecular Sciences, 9 (4): 434-453. [DOI:10.3390/ijms9040434]
44. Tripathi, R., Girjesh, K., (2010), "Genetic loss through heavy metal induced chromosomal stickiness in Grass pea. Caryologia", 63 (3): 223-228. [DOI:10.1080/00087114.2010.10589731]
45. Vyas, D., Mehta, N., Dinakaran, J., Krishnayya, N. S. R., (2010), "Allometric equations for estimating leaf area index (LAI) of two important tropical species (Tectona grandis and Dendrocalamus strictus)", Journal of Forestry Research, 21 (2): 197-200. [DOI:10.1007/s11676-010-0032-0]
46. Watson, D. J., (1947), "Comparative physiological studies on the growth of field crops: variation in net assimilation rate and leaf area between species and varieties, and within and between years", Annals of Botany, 11 (41): 41-76. [DOI:10.1093/oxfordjournals.aob.a083148]
47. Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., Coppin, P., (2004), "Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121 (1–2): 37-53. [DOI:10.1016/j.agrformet.2003.08.001]
48. Welles, J. M., (1990), "Some indirect methods of estimating canopy structure", Remote Sensing Reviews, 5 (1): 31-43. [DOI:10.1080/02757259009532120]
49. Xiao, Z., Liang, S., Wang, T., Jiang, B., (2016), "Retrieval of leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) from VIIRS time-series data", Remote Sensing, 8 (4): 351. [DOI:10.3390/rs8040351]
50. Yamaguchi, M., Izuta, T., (2017), "Air Pollution Impacts on plants in east Asia", Springer,
51. pp 283-293.
52. Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T., Scott, R., (2012), "Remote Sensing of Environment Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model", Remote Sensing of Environment, 124: 581-595. [DOI:10.1016/j.rse.2012.06.004]
53. Zheng, G., Moskal, L. M., (2009), "Retrieving Leaf Area Index (LAI) using remote sensing: theories, methods sensors", Sensors, 9 (4): 2719-2745. [DOI:10.3390/s90402719]
54. Zia-Khan, S., Spreer, W., Pengnian, Y., Zhao, X., Othmanli, H., He, X., Müller, J., (2015), "Effect of dust deposition on stomatal conductance and leaf temperature of cotton in Northwest China", Water (Switzerland), 7 (1): 116-131.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafi A, Amiraslani F, Darvishi Boloorani A, Mousivand A J. Leaf Area Index (LAI) Responses of Tree Species to Industrial Dust (Case Study: The Caspian Hyrcanian Mixed Forests). جغرافیایی 2019; 18 (64) :267-286
URL: http://geographical-space.iau-ahar.ac.ir/article-1-3211-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 64 (3-2019) Back to browse issues page
فضای جغرافیایی Geographic Space
Persian site map - English site map - Created in 0.18 seconds with 37 queries by YEKTAWEB 4657