[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 18, Issue 64 (3-2019) ::
جغرافیایی 2019, 18(64): 41-60 Back to browse issues page
Simulation of Temperature and Precipitation Changes in the Urmia Lake Basin Through SDSM Downscaling Model
Massoud Goodarzi * 1, Borumand Salahi2 , Asad Hoseini2
1- SCWMRI
2- Ardabil University
Abstract:   (5432 Views)

Temperature and precipitation are among the most important elements playing major roles in the study of climate change. These parameters have particular importance on water resources and natural ecosystems and also environmental, economic and social impacts. So in this research, we are about to simulate changes of temperature and precipitation in the Urmia Lake Basin where is facing environmental crisis and risk of drying is discussed for 2011- 2030 period. It was done by SDSM downscaling model. Meteorological stations evaluated are including four stations Saghez, Tabriz, Khoy and Urmia where have had full datum in the base period (1990 -1961). In the study, first of all, the efficiency of SDSM model was evaluated using observed data and station renovated data of National Center for Environmental Prediction (NCEP). Indices such as MSE, RMSE, MAE and the coefficient of determination and correlation were used. After ensuring the accuracy of the simulation model, climate parameters (rainfall, minimum and maximum temperature) was simulated using general circulation HadCM3 model under two scenarios A2 and B2 within 2030 for the study area. The results showed that the model has relevant ability to simulate temperature and rainfall. Based on the results of HadCM3 temperature and precipitation would be increased during 2020s (2011 -2030), comparing to the base period. In fact, minimum and maximum temperatures would be increased 29.7 mm, 0.3 and 1.4 degrees respectively.

Keywords: Climate Change, Downscaling, Precipitation, Simulation, Temperature, Urmia
Full-Text [PDF 1005 kb]   (1012 Downloads)    
Type of Study: Research | Subject: Special
Received: 2015/08/13 | Accepted: 2016/08/9 | Published: 2019/03/15
References
1. - Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., Haile, A. T., (2009), "Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin. Ethiopia", Hydrological Processes, 45: 18-30. [DOI:10.1002/hyp.7363]
2. Abkar, A., Habibnejad, M., Soleimani, K., Naqavi, H., (2013), "Assessing SDSM in simulation of temperature in the arid and semi-arid region", Journal of irrigation and water, 4 (14): 1-17. [In Persian].
3. Ansari Moqadam, N., Hesami Kermani, M. R., (2012), "Prediction of precipitation using statistical downscaling the out puts of CGCM3 & HADCM3: a Case study in Urmia lake", 11th Iranian Hydraulic conference, University of Urmia, 6th November, 2012. [In Persian].
4. Aqashahi, M., Ardestani, M., Niksokhan, M., H., Tahmasebi, B., (2012), "Introducing & comparison of Lars-Wg & SDSM models in order to downscale environmental parameters in climate change studies", 6th national conference & special exhabition on environmental engineering, Tehran, 17th November, 2012. [In Persian].
5. Ashofteh P., Massah Bavani, A., (2009), "Climate change impacts on maximum discharge: a case study in Aidaqmush East Azarbaijan", Journal of scinces & techniques of Agriculture & Natural Resources, Water & soil sciences, 4: 53: 25-39. [In Persian].
6. Chen, H., Yu Xu, C., Guo, SH., (2012), "Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff", Journal of Hydrology, 434-435: 36-45. [DOI:10.1016/j.jhydrol.2012.02.040]
7. Espenani, K., Shahidi, A., Rostamian, R., Farzaneh, M. R., (2012), "Investigation of climate change in future period using SDSM: a case study in Behesht Abad", North Karun, 1st national conference on Desert, 16th June. [In Persian].
8. Fung, F., Lopez, A. L., New, M., (2011), "Modeling the impact of climate change on water resources", Wiley-Blackwell, london.
9. Goodarzi, M., (2011), "Assessing climate change impacts on surface runoff of upper Karkha river basin", PhD thesis, University of Tabriz, Departement of Geography, Iran. [In Persian].
10. Goodarzi, M., Jahanbakhsh, S., Rezaee, M., Ghafouri, A., Mahdian, M. H., (2011), "Assessment of climate change statistical downscaling methods in a single site in Kermanshah, Iran", American-Eurasian J. Agric. & Environ. Sci., 6 (5): 564-572.
11. Goodarzi, M., Khosravanian, J., Hejazi, A., (2015), "Prediction of climatic parameters using Lars-WG model in Qare-su", Journal of geographical space, 15 (51): 263-279. [In Persian].
12. Guo, B., Zhang, J., Gong, H., Cheng, X., (2014), "Future climate change impacts on the ecohydrology of Guishui River Basin China", Ecohydrology & Hydrobiology, 14 (1): 55-67. [DOI:10.1016/j.ecohyd.2014.02.005]
13. Hamidianpur, M., Soltani, J., Qandehari, Q., (2013), "Climate change impact assessment on runoff in Bar & Taqan Basin using the out put of HadCm3 model", 1st Iranian national conference on climatology, advanced science and technology of Kerman, 21th May. [In Persian].
14. Karamouz, M., Ramezani, F., Razavi, S., (2007), "Forecasting the long-term of rainfall through meteorological signals: Application of Artificial Neural Networks", Seventh International Congress on Civil Engineering, Tehran; 8th May. [In Persian].
15. Khalili N., Khodashenas, S., Davari, K., (2006), "Prediction of precipitation using artificial naural network models", 2nd conference on water resources management, 23th January. [In Persian].
16. Kuhi, M., Sanaee Nejad, M., H., (2012), "Investigating climate change scenarios based on two statistical downscaling methods for the variable of evapotranspiration in Urmia region", Iranian journal of irrigation and drainage, 4: 559-574. [In Persian].
17. Mahsafar, H., Maknun, R., Saqafian, B., (2011), "Climate change impacts on water balance of Urmia lake", Journal of Iranian Water resources researches, 7: 47-58. [In Persian].
18. Malcolm, R., Cawely, G. C., Harpham, C., Wilby, R. L., Goodees, C. M., (2006), "Downscaling heavy precipitaion over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarious", International journal of climatology, 9: 1397-1415.
19. Mohamadlu, M., Haqizadeh, A., Zeinivand, H., Tahmasebipur, N., (2016), "Assessment of climate change impacts on trend changes of temperature & precipitation in Baranduzchai basin, west Azarbaijan using AOGCM", Journal of geographical space, 56 (16): 151-168. [In Persian].
20. Philippe, G., Yonas, B., Dibike, P., (2007), "Temperature change signal in northern Canada: convergence of statistical downscaling results using two driving GCM", Intrnational journal of climatology, 260: 161-175.
21. Prudhomme, C., Reynard, N., Crooks, S., (2002), "Downscaling of global climate models for flood frequency analysis: where are we now?", Hydrological Processes, 16: 1137-1150. [DOI:10.1002/hyp.1054]
22. Qermezcheshmeh, B., Rasuli, A., A., Rezaee Banafsheh, M., Khorshid Dust, A., M., (2014), "Investigation of Morpho-climatic parameters impacts on precision of SDSM", Journal of engineering and watershed management, 6 (2): 155-164. [In Persian].
23. Samadi, S. Z., Massah Bavani, A., (2008), "Introducing artificial naural network methods and SDSM model forstatistical downscaling of temperature & precipitation", 3rd conference on water resources management of Iran, Tabriz university, 14th October. [In Persian].
24. Samadi, S. Z., Massah Bavani, A., Mahdavi, M., (2009), "Selection of predictors for downscalingtemperature and precipitation in Qaresu Karkheh", 5th national conference on science and watershed management engineering of Iran, 22th April. [In Persian].
25. Sedaghatkerdar, A., Fattahi, E., (2008), "Warning of drought indices in Iran", Journal of Geography and Development, University of Sistan and Baluchestan; 11 (6): 76-59. [In Persian].
26. Wilby, R. L., Dawson C. W., Barrow, E. M., (2002), "SDSM a decision support tool for the assessment of regional climate change impacts", Environmental Modeling & Software, 17 (2): 147-159. [DOI:10.1016/S1364-8152(01)00060-3]
27. Wilby, R.L., Harris, I., (2006), "A frame work for assessing uncertainties in climate change impacts: low flow scenarios for the River Thames, UK", Water Resour. Res. 42: 10-22. [DOI:10.1029/2005WR004065]
28. Wilby, R. L., Dawson, W. C., (2007), "SDSM 4.2- A decision support tool for the assessment of regional climate change impacts, SDSM manual version 4.2", Lancaster University, Lancaster.
29. Zinati, N., Hesami Kermani, M. R., (2014), "Comparison of neuro-fuzzy and ASD methods in predicting of climate change: a case study Kerman synoptic station", Journal of agricultural meteorology, 2 (1): 1-16. [In Persian].
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Goodarzi M, Salahi B, Hoseini A. Simulation of Temperature and Precipitation Changes in the Urmia Lake Basin Through SDSM Downscaling Model . جغرافیایی 2019; 18 (64) :41-60
URL: http://geographical-space.iau-ahar.ac.ir/article-1-1855-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 64 (3-2019) Back to browse issues page
فضای جغرافیایی Geographic Space
Persian site map - English site map - Created in 0.19 seconds with 37 queries by YEKTAWEB 4657